Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER

نویسندگان

  • Jiaxin Lu
  • Weijun Wang
  • Yingchao Zhang
  • Song Cheng
چکیده

Implementation of hybrid energy system (HES) is generally considered as a promising way to satisfy the electrification requirements for remote areas. In the present study, a novel decision making methodology is proposed to identify the best compromise configuration of HES from a set of feasible combinations obtained from HOMER. For this purpose, a multi-objective function, which comprises four crucial and representative indices, is formulated by applying the weighted sum method. The entropy weight method is employed as a quantitative methodology for weighting factors calculation to enhance the objectivity of decision-making. Moreover, the optimal design of a stand-alone PV/wind/battery/diesel HES in Yongxing Island, China, is conducted as a case study to validate the effectiveness of the proposed method. Both the simulation and optimization results indicate that, the optimization method is able to identify the best trade-off configuration among system reliability, economy, practicability and environmental sustainability. Several useful conclusions are given by analyzing the operation of the best configuration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Approach for Optimal Sizing of Stand-alone Hybrid Photovoltaic/Wind Systems

Nowadays using of new energies in the form of dispersed resources in the worlds is wide spreading. In this article we will design a dispersed production source in the form of a solar/wind hybrid power plant in order to supply the energy of a residential unit according to a sample load pattern. The aim of aforementioned design is to reduce its costs in a period of 20 years. In order to optimi...

متن کامل

Optimal Sizing of a Reliable Hydrogen-based Stand-alone Wind-Fuel Cell System

A hybrid wind/ fuel cell generation system is designed to supply power demand. The aim of this design is to minimize the total cost of the hybrid system over an expected 20 years of operation. The optimization problem is solved aimed at providing a reliable supply for the consumer’s demand. The system consists of fuel cells, some wind units, some electrolyzers, a reformer, an anaerobic reactor ...

متن کامل

A Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle

Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...

متن کامل

Multi Attribute Investment Planning of a Grid-Connected Diesel/Wind/PV/Battery Hybrid Energy System

Recently, along with the depletion of fossil fuels and growing electrical requirements, more attention has been paid on utilizing Renewable Energy Sources (RESs). The Chichest tourism complex is located 20 km far from Orumieh, Iran which has been supplied through the main distribution grid connection. But, recently the trend is to expand the share of RESs in supplying microgrids demand. Hence, ...

متن کامل

Ranking Locations Based on Hydrogen Production from Geothermal in Iran Using the Fuzzy Moora Hybrid Approach and Expanded Entropy Weighting Method

The present study aimed at ranking and selecting the superior geothermal project for hydrogen production in 14 provinces of Iran using a multi-objective optimization fuzzy hybrid approach through analyzing the ratio (fuzzy Moora) and expanded entropy weighting method. In this research, the extended entropy weighing method and the Fuzzy-Moora approach were utilized to weigh the criteria and proj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017